Equilibrative nucleoside transporter 1 expression is downregulated by hypoxia in human umbilical vein endothelium.
نویسندگان
چکیده
Reduced oxygen level (hypoxia) induces endothelial dysfunction and release of the endogenous nucleoside adenosine. Human umbilical vein endothelium (HUVEC) function in an environment with 3% to 5% O2 and exhibit efficient adenosine membrane transport via human equilibrative nucleoside transporters 1 (hENT1). We studied whether adenosine transport and hENT1 expression are altered by hypoxia in HUVEC. Hypoxia (0 to 24 hours, 2% and 1% O2) reduced maximal hENT1-adenosine transport velocity (V(max)) and maximal nitrobenzylthionosine (NBMPR, a high-affinity hENT1 protein ligand) binding, but increased extracellular adenosine concentration. Hypoxia also reduced hENT1 protein and mRNA levels, effects unaltered by N(omega)-nitro-l-arginine methyl ester (l-NAME, nitric oxide synthase [NOS] inhibitor) or PD-98059 (inhibitor of mitogen-activated protein kinase kinase 1 and 2 [MEK1/2]). Hypoxia reduced endothelial NOS (eNOS) activity and eNOS phosphorylation at Ser(1177), but increased eNOS protein level. Hypoxia increased (1 to 3 hours), but reduced (24 hours) p42/44(mapk) phosphorylation. Thus, hypoxia-increased extracellular adenosine may result from reduced hENT1-adenosine transport in HUVEC. Hypoxia effect seems not to involve NO, but p42/44(mapk) may be required for the relatively rapid effect (1 to 3 hours) of hypoxia. These results could be important in diseases where the fetus is exposed to intrauterine environments poor in oxygen, such as intrauterine growth restriction, or where adenosine transport is altered, such as gestational diabetes.
منابع مشابه
Control of adenosine transport by hypoxia.
The extracellular accumulation of the nucleoside adenosine is one of the first steps in a protective auto/ paracrine signaling cascade aimed at limiting cellular damage in response to adverse conditions including hypoxia or ischemia.1 This adenosine acts as a signal molecule that is able to mediate numerous physiological and metabolic effects that could be beneficial to hypoxic cells including ...
متن کاملNucleoside and nucleobase transporters of primary human cardiac microvascular endothelial cells: characterization of a novel nucleobase transporter.
Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (EN...
متن کاملHypoxanthine enters human vascular endothelial cells (ECV 304) via the nitrobenzylthioinosine-insensitive equilibrative nucleoside transporter.
The transport properties of the nucleobase hypoxanthine were examined in the human umbilical vein endothelial cell line ECV 304. Initial rates of hypoxanthine influx were independent of extracellular cations: replacement of Na+ with Li+, Rb+, N-methyl-D-glucamine or choline had no significant effect on hypoxanthine uptake by ECV 304 cells. Kinetic analysis demonstrated the presence of a single ...
متن کاملHIF-1–dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia
Extracellular adenosine (Ado) has been implicated as central signaling molecule during conditions of limited oxygen availability (hypoxia), regulating physiologic outcomes as diverse as vascular leak, leukocyte activation, and accumulation. Presently, the molecular mechanisms that elevate extracellular Ado during hypoxia are unclear. In the present study, we pursued the hypothesis that diminish...
متن کاملEnhanced efficacy of gemcitabine by indole-3-carbinol in pancreatic cell lines: the role of human equilibrative nucleoside transporter 1.
Pancreatic cancer patients treated with gemcitabine (2',2'-difluorodeoxycytidine) can eventually develop resistance. Recently, published data from our laboratory demonstrated enhanced efficacy of gemcitabine with the dietary agent, indole-3-carbinol (I3C). The current study examined the possible mechanism for this I3C-enhanced efficacy. Several pancreatic cell lines (BxPC-3, Mia Paca-2, PL-45, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 97 1 شماره
صفحات -
تاریخ انتشار 2005